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Abstract

Two efficient methods for determining the approximate eigenvalues and eigenvectors for arbitrarily
damped nearly proportional systems are developed. Both approaches are formulated by means of a first-
order perturbation technique, whereby the real modes of vibration of the undamped system are used to
derive approximate expressions for the complex eigenvalues and eigenvectors of a nearly proportionally
damped system. Using either approach, the unperturbed configuration corresponds to a damped one whose
damping matrix can be diagonalized by the same transformation that uncouples the undamped system, and
the perturbation consists of the deviation of this diagonalizable damping matrix from the actual damping
matrix. The proposed approaches are easy to code, implement and solve, and do not require forming state
equations. Numerical examples are presented to validate the effectiveness of the current methods.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic analysis of a discrete vibratory system typically begins with an evaluation of their
eigensolutions. To meet new performance specifications, one is often required to make design
modifications after an initial analysis has been completed, and to determine the resulting changes
in the eigensolutions. Clearly, if these modifications are large, then a new analysis and
computational cycle are necessary in order to compute the new eigendata. However, if the changes
see front matter r 2005 Elsevier Ltd. All rights reserved.
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made are small, then the perturbation theory can be applied whereby the initial modal
characteristics are used as a basis to extract the new eigensolution of the modified system without
performing a new and possibly costly analysis. Over the years the perturbation theory has been
used in the solution of many different problems [1–6].
The perturbation approach can also be used to study the effects of light damping. For an

undamped system, the eigensolutions are real. These eigensolutions, also known as the modes of
vibration, are characterized by the natural frequencies and the mode shapes of the system. For a
damped system, the eigensolutions are typically complex. To obtain the eigensolutions exactly,
state equations are used, resulting in a generalized eigenvalue problem with complex eigenvalues
and eigenvectors that require extensive computations. Many efficient methods have been
proposed over the years to determine the complex eigenvalues and eigenvectors of lightly damped
systems by means of a perturbation technique [7–11]. If the amount of damping in the system is
very small, then the eigensolutions of the lightly damped system differ only slightly from those of
the undamped configuration. Hence, the eigensolutions of the lightly damped system can be
approximated in terms of a power series expanded from the eigensolutions of the undamped
system. Knowing the eigensolutions of the undamped system, the higher order terms of this
expansion which reflect the effects of damping can be easily obtained.
In this paper, two approaches are introduced that can be used to determine the first-order

eigenvalues and eigenvectors of an arbitrarily damped but nearly proportional or weakly non-
proportional system. Both approaches are developed by means of the perturbation theory. Using
the proposed methods, the eigensolutions of the unperturbed or proportionally damped system
will be used to extract the eigensolutions of the arbitrarily damped, weakly non-proportional
system. The unperturbed configuration corresponds to one whose damping matrix can be
diagonalized by the modal matrix of the undamped system. Thus, the eigensolutions of the
unperturbed system depend only on the undamped natural frequencies and mode shapes, which
are strictly real quantities. Both approaches rely on the perturbation technique, but they are
completely different in the ways in which their diagonalizable damping matrices are formulated.
The benefits of the current methods will be discussed and highlighted, and numerical experiments
will be presented to show the effectiveness of the proposed approaches.
2. Theory

In the following sections, the eigensolutions of an undamped, generally damped and
proportionally damped systems are first introduced. These results are well known and they are
presented for completeness, and more importantly, for notational purposes.
2.1. Undamped systems

Consider an undamped N-degree of freedom (dof) system whose equations of motion are
given by

½M� €q
0
þ ½K �q

0
¼ 0 , (1)



ARTICLE IN PRESS

P.D. Cha / Journal of Sound and Vibration 288 (2005) 813–827 815
where ½M� and ½K� are the symmetric mass and stiffness matrices of the system. The modes of
vibration of the undamped system correspond to the eigensolution of the following generalized
eigenvalue problem:

½K �u0 ¼ o2½M�u0, (2)

where o denotes the natural frequency of the system and u0 is its mode shape. Assume the N
natural frequencies are all distinct and the mode shapes are properly normalized, then they satisfy
the following orthogonality conditions:

uT0j½M�u0i ¼ dj
i and uT

0j½K �u0i ¼ o2
j d

j
i for i; j ¼ 1; . . . ;N, (3)

where dj
i is the Kronecker delta. Eq. (3) can also be expressed compactly in matrix form as

½U0�
T½M�½U0� ¼ ½I � and ½U0�

T½K�½U0� ¼ ½L�, (4)

where ½I � is the identity matrix, ½L� is a diagonal matrix whose ith element is simply o2
i ; and ½U0�

is the modal matrix of the system whose columns are the normalized mode shapes, i.e., ½U0� ¼

½u01 u02 � � � u0N �:

2.2. Generally damped systems

The governing equations for a generally damped N-dof system can be expressed as

½M� €qþ½C� _qþ½K � q ¼ 0 , (5)

where ½M�; ½C� and ½K � are the symmetric mass, damping and stiffness matrices, respectively, of
the system. The vector of generalized displacements, q; has a solution given by the following
exponential form:

qðtÞ ¼ u elt, (6)

where l is a constant scalar and u is a constant vector, and they are known as the eigenvalue and
eigenvector, respectively. Collectively, they form the eigensolution of the system. Inserting Eq. (6)
into Eq. (5) and noting that an exponential can never be zero, one obtains

fl2½M� þ l½C� þ ½K �g u ¼ 0 . (7)

To have a non-trivial solution for u; the determinant of the coefficient matrix of u must vanish.
Expanding the resulting determinant leads to a 2N-order polynomial in l; the solution of which
can be readily solved using any prepackaged code such as rpzero in CMLIB [12] or roots in
MATLAB. Once the eigenvalues are known, the corresponding eigenvectors are obtained by
solving Eq. (7) using Gaussian elimination.
Alternatively, the eigensolutions, l and u; of Eq. (6) can also be determined by using a state

matrix approach, which effectively replaces the N coupled second-order differential equations of
Eq. (5) by 2N coupled first-order ordinary differential equations as follows [13]. A state vector of
length 2N is introduced,

y ¼
_q

q

" #
¼

l u

u

" #
elt ¼ z elt, (8)
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such that Eq. (5) can be rewritten in a form that consists of 2N simultaneous first-order ordinary
differential equations

½A� _y
½B� y ¼ 0 , (9)

where matrices ½A� and ½B� are both symmetric and are given by

½A� ¼
½0� ½M�

½M� ½C�

" #
and ½B� ¼

½M� ½0�

½0� 
½K�

" #
. (10)

Substituting Eq. (8) into Eq. (9) yields the following 2N � 2N generalized eigenvalue problem:

½B� z ¼ l½A� z . (11)

Assume the 2N eigenvalues are distinct and all the eigenvectors are properly normalized. Then the
orthogonality properties of the eigenvalues and eigenvectors can be expressed as [13]

½Z�T½A�½Z� ¼ ½I � and ½Z�T½B�½Z� ¼ ½L�, (12)

where the modal matrix ½Z� ¼ ½z1 z2 � � � z2N �; ½I � is the identity matrix, and ½L� here is a
2N � 2N diagonal matrix whose ith elements is li: Using a state vector formulation, the li’s and
the corresponding zi’s (and hence the ui’s), can be readily solved by using any existing
prepackaged code such as rsg in EISPACK [14] or eig in MATLAB. When N is large, the
eigensolution of the generalized eigenvalue problem of Eq. (11) may be computationally intensive.

2.3. Proportionally damped systems

Consider now the special case of a proportionally damped system, whose eigensolutions can be
determined exactly using only the modes of vibration of the undamped configuration. For a
proportionally damped system, its equations of motion are given by

½M� €q
p
þ ½Cp� _qp

þ ½K �q
p
¼ 0 , (13)

where q
p
is the vector of generalized coordinates for the proportionally damped system, whose

damping matrix ½Cp� can be expressed as a linear combination of the mass and stiffness
matrices as

½Cp� ¼ a½M� þ b½K �. (14)

The parameters a and b are real constants, and ½Cp� can be diagonalized by the same
transformation that was used earlier to decouple the equations of motion for the undamped
configuration, namely

q
p
¼ ½U0�Zp

, (15)

where Z
p
represents the vector of normal coordinates for the proportionally damped system.

Substituting Eq. (15) into Eq. (13), premultiplying by ½U0�
T and utilizing the orthogonality

properties of the undamped mode shapes, the equations of motion become decoupled in the
normal coordinates

€Zpj þ 2zjoj _Zpj þ o2
j Zpj ¼ 0 for j ¼ 1; . . . ;N, (16)
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where the jth damping factor is given by

zj ¼
aþ bo2

j

2oj

. (17)

The solution of Eq. (16) is given by

Zpj ¼ Z̄pje
lpj t, (18)

where lpj; the eigenvalues, are found to be

lpj ¼ 
zj �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j 
 1

q� �
oj for j ¼ 1; . . . ;N, (19)

where zj and oj are the jth damping factor and the jth undamped natural frequency, respectively.
For a given zj and oj; two eigenvalues lþpj and l
pj are possible, one corresponding to the positive
square root and the other to the negative square root of Eq. (19). If 0pzjo1; the eigenvalues lþpj

and l
pj are complex conjugates. For zj ¼ 1; the eigenvalues are real, negative and identical. For
zj41; the eigenvalues are real, negative and distinct. Regardless, Rayleigh [15] showed that if the
damping matrix is a linear combination of the mass and stiffness matrices, then the damped
system will have the same normal modes as the undamped system. Thus, the eigenvectors
associated with both eigenvalues are given by u0j:
2.4. Nearly proportionally damped systems

In this paper, two alternative means to determine the eigenvalues li and the eigenvectors ui are
proposed for the special case of nearly proportionally damped systems. In particular, the
eigensolutions or the modes of vibration of the undamped configuration will be used as basis to
find the approximate eigensolutions for an arbitrarily damped but weakly non-proportional
system without resorting to state form.
2.4.1. Least squares approach
For a damped weakly non-proportional system, its damping matrix can be expressed as

½C� ¼ ½Cp� þ ½dC�, (20)

where ½dC� is the deviation from a proportionally damped matrix. Because the system is weakly
non-proportionally damped, ½dC� represents a first-order damping matrix. The constants a and b
of ½Cp� can be obtained by using a least squares formulation such that the norm of jj½C� 
 ½Cp�jj;
defined as

f n ¼
XN

i¼1

XN

j¼1

½Cij 
 ðaMij þ bKijÞ�
2, (21)

is minimized, where Cij ; Mij and Kij are the ði; jÞth element of the damping, mass and stiffness
matrices, respectively. Setting the partial derivatives of f n with respect to a and b equal to zero



ARTICLE IN PRESS

P.D. Cha / Journal of Sound and Vibration 288 (2005) 813–827818
yields the matrix equation

PN
i¼1

PN
j¼1

ðMijÞ
2 PN

i¼1

PN
j¼1

MijKij

PN
i¼1

PN
j¼1

MijKij

PN
i¼1

PN
j¼1

ðKijÞ
2

2
66664

3
77775

a

b

" #
¼

PN
i¼1

PN
j¼1

CijMij

PN
i¼1

PN
j¼1

CijKij

2
66664

3
77775, (22)

which can be readily solved for the parameters a and b that minimize Eq. (21).
A first-order perturbation approach will be used to obtain the approximate eigensolutions of an

arbitrarily damped but weakly non-proportional system. The proportionally damped system will
be considered as the unperturbed configuration, and the first-order damping matrix ½dC� will be
considered as the perturbation. The eigensolutions of the proportionally damped or the
unperturbed system depend only on the eigensolutions of the undamped configuration.
Because the damping matrix ½C� is slightly perturbed from the proportionally damped matrix

½Cp�; the jth eigensolution of the system will be a perturbation of the jth eigensolution of the
proportionally damped system

lj ¼ l0j þ dlj and uj ¼ u0j þ duj, (23)

where l0j is the jth eigenvalue of the unperturbed or the proportionally damped system, thus
l0j ¼ lpj; and u0j represents the jth eigenvector of the undamped system; dlj and duj denote the
first-order eigenvalue and eigenvector perturbations, respectively. Substituting Eqs. (20) and (23)
into Eq. (7), expanding, keeping only the first-order terms, and noting that the unperturbed
eigensolution satisfies

ðl20j½M� þ l0j½Cp� þ ½K�Þu0j ¼ 0 , (24)

one gets

2l0jdlj½M�u0j þ l0j½dC�u0j þ dlj½Cp�u0j þ ðl20j½M� þ l0j½Cp� þ ½K�Þduj ¼ 0 . (25)

Premultiplying Eq. (25) by uT0j; one obtains

2l0jdlju
T
0j½M�u0j þ l0ju

T
0j½dC�u0j þ dlju

T
0j½Cp�u0j ¼ 0. (26)

Recalling Eq. (14) and the orthogonality conditions of Eq. (3), one finds an expression for the
first-order eigenvalue perturbation

dlj ¼ 

l0ju

T
0j½dC�u0j

2l0j þ aþ bo2
j

. (27)

The first-order eigenvector perturbation duj of Eq. (23) can be obtained by premultiplying
Eq. (25) by uT0i; where iaj; to yield

2l0jdlju
T
0i½M�u0j þ l0ju

T
0i½dC�u0j þ dlju

T
0i½Cp�u0j þ l20ju

T
0i½M�duj þ l0ju

T
0i½Cp�duj þ uT

0i½K�duj ¼ 0.

(28)

Recall that the natural frequencies of the undamped system are assumed to be distinct, and that
the eigenvectors u0j are normalized according to Eq. (3). Thus, the u0j’s form a complete
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orthonormal set (with respect to ½M�) in the N-dimensional space, and any vector in that
N-dimensional space may be expressed as a linear combination of the u0j’s. Hence, the jth first-
order eigenvector perturbation can be written as

duj ¼
XN

r¼1

�rju0r, (29)

where the �rj’s are small coefficients to be determined. Substituting Eq. (29) into Eq. (28) and
applying the orthogonality properties of Eq. (3), one obtains

�ij ¼ 

l0ju

T
0i½dC�u0j

l0jðl0j þ aÞ þ o2
i ðbl0j þ 1Þ

. (30)

To determine the coefficients �jj ; the perturbed eigenvectors uj’s are assumed to satisfy the
following orthogonality condition:

uTj ½M�uj ¼ 1. (31)

Inserting Eq. (23) into Eq. (31), expanding and keeping only the first-order terms, one reduces
Eq. (31) to

uT0j½M�u0j þ uT
0j½M�duj þ duT

j ½M�u0j ¼ 1. (32)

Upon substituting Eq. (29) into Eq. (32) and noting the orthogonality properties, one finds �jj ¼ 0:
Thus, the jth first-order eigenvector perturbation is

duj ¼ 

XN

i¼1;iaj

l0ju
T
0i½dC�u0j

l0jðl0j þ aÞ þ o2
i ðbl0j þ 1Þ

u0i. (33)

In summary, the jth perturbed eigenvalue for an arbitrarily damped nearly proportional system
can be approximated as

lj ¼ l0j 1

uT0j½dC�u0j

2l0j þ aþ bo2
j

 !
, (34)

and the corresponding perturbed eigenvector is given by

uj ¼ u0j 

XN

i¼1;iaj

l0ju
T
0i½dC�u0j

l0jðl0j þ aÞ þ o2
i ðbl0j þ 1Þ

u0i, (35)

where l0j is the jth eigenvalue of the proportionally damped system, and oj and u0j are the jth
natural frequency and mode shape of the undamped configuration. The parameters a and b are
found using a least squares approach by minimizing Eq. (21).

2.4.2. Transformation approach

For a proportionally damped system, the modal matrix of the undamped system ½U0� can be
used to diagonalize the damping matrix ½Cp�; yielding

½U0�
T½Cp�½U0� ¼ diag½2zjoj� for j ¼ 1; . . . ;N. (36)
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For a generally damped system, however, diagonalization is seldom possible. Nevertheless, it is
always possible to express

½U0�
T½C�½U0� ¼ ½D� þ ½ND�, (37)

as the sum of a diagonal matrix ½D� and a non-diagonal matrix ½ND�: Using Eq. (4), one can
manipulate Eq. (37) and find an expression for the damping matrix

½C� ¼ ½M�½U0�½D�½U0�
T½M� þ ½M�½U0�½ND�½U0�

T½M� ¼ ½Cd � þ ½dC0�, (38)

where

½Cd � ¼ ½M�½U0�½D�½U0�
T½M� and ½dC0� ¼ ½M�½U0�½ND�½U0�

T½M�. (39)

Here, ½Cd � is an arbitrary damping matrix that can be diagonalized by the same transformation
that uncouples the undamped system. It does not have to be a linear combination of the mass and
stiffness matrices. Thus in general, ½Cd �a½Cp� and ½dC0�a½dC�:
If the system is nearly proportionally damped, ½dC0� will be of first-order relative to ½Cd �; and

the perturbation approach can again be applied to find the approximate eigensolutions of the
system. Thus, the perturbation results obtained in Section 2.4.1 can be easily extended to this case.
Using this particular approach, the unperturbed system is the damped system with ½Cd �; and the
perturbation is simply ½dC0�:
Because ½Cd � can be diagonalized by the same transformation that uncouples the undamped

system, i.e.,

½U0�
T½Cd �½U0� ¼ ½D�, (40)

the unperturbed system considered here possesses the same normal modes as the undamped
configuration [16]. Thus, the damped system with ½Cd � can be easily uncoupled in the normal
coordinates. After some algebraic manipulation, one obtains the following equations of motion in
the normal coordinates:

€Zdj þ 2z0joj _Zdj þ o2
j Zdj ¼ 0 for j ¼ 1; . . . ;N, (41)

where the jth damping factor is related to the jth diagonal element of ½D�

z0j ¼
Djj

2oj

, (42)

and oj denotes the jth undamped natural frequency of the system. Thus, the unperturbed
eigenvalues using this approach are given by

ldj ¼ 
z0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0j

2

 1

q� �
oj for j ¼ 1; . . . ;N, (43)

and the unperturbed eigenvectors are u0j: Like before, two eigenvalues lþdj and l
dj are possible for
a given z0j and oj:
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Following the same procedure that was outlined in Section 2.4.1, one obtains the following
approximation for the jth eigenvalue:

lj ¼ ldj 1

uT0j½dC0�u0j

2ldj þ Djj

 !
¼ ldj 1


NDjj

2ldj þ Djj

� �
¼ ldj, (44)

because NDjj ¼ 0; implying that the perturbed and unperturbed eigenvalues are exactly the same.
Similarly, the corresponding jth eigenvector is found to be

uj ¼ u0j 

XN

i¼1;iaj

ldjNDij

ldjðldj þ DiiÞ þ o2
i

u0i, (45)

where ldj is given by Eq. (43), and oj and u0j are the jth natural frequency and mode shape of the
undamped system. While no term of ½ND� appears in the expression for the perturbed eigenvalues,
elements of ½ND� do affect the perturbed eigenvectors.
Using this approach, the perturbed and unperturbed eigenvalues are shown to be identical.

They can also be obtained by simply approximating ½U0�
T½C�½U0� � ½D�; thus justifying the

common practice of neglecting the off-diagonal terms of ½U0�
T½C�½U0� when they are small

compared to the diagonal [13]. While this approximation is well known, to the best knowledge of
this author, it has not previously been validated using this approach. Thus, it may appear that
nothing is gained by introducing the transformation approach. However, the proposed scheme
allows one to find a first-order approximation for the eigenvectors. This, in turn, enables one to
compute ½Zpert�

T½B�½Zpert�; whose diagonal elements offer yet another approximation to the exact
eigenvalues. Finally, note that if ½Cd � ¼ ½Cp� and ½dC0� ¼ ½dC�; then ldj ¼ l0j; NDij ¼ uT0i½dC�u0j;
Dii ¼ aþ bo2

i ; and Eqs. (44) and (45) become Eqs. (34) and (35), respectively.
3. Results

Various examples will be considered to validate the effectiveness of the proposed methods. The
system of Fig. 1 will be analyzed, which consists of a discrete system with five dof. When c1 ¼
k1 ¼ 0; the system possesses proportional damping with a ¼ 0 and b ¼ c0=k0: By simply changing
c1 and k1; the extent of the non-proportionality of the damping matrix can be varied. Multiplying
the damping matrix ½C� by a parameter s allows the system damping factors to be modified.
okok ok ok ok

oc oc oc oc oc

1k

1c

1c

om om2 om om3 om

ok

1c+co

Fig. 1. Discrete model with five degrees of freedom.
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The amount of damping in the system can be arbitrary, but the damping matrix is restricted to
nearly proportional or weakly non-proportional. To determine quantitatively the degree of non-
proportional damping present in the system, a non-proportionality index is introduced, defined as
the quotient of the sum of the absolute value of all the terms in the transformed first-order
damping matrix and the sum of the absolute value of all the terms in the transformed damping
matrix,

d ¼

PN
i¼1

PN
j¼1jND0

ijjPN
i¼1

PN
j¼1jC

0
ijj

, (46)

where the transformed damping matrix is ½C0� ¼ ½U0�
T½C�½U0�; and the transformed first-order

damping matrix corresponds to ½ND0� ¼ ½U0�
T½dC�½U0� for the least squares method, and to

½ND0� ¼ ½ND� for the transformation approach. Using the latter approach, the non-proportion-
ality index of Eq. (46) coincides with the summation based index that Prater and Singh introduced
in Ref. [17] to characterize the extent of non-proportional damping present within a discrete
vibratory system. Using either approach, as long as d51; the system is nearly proportional
damped, and for d ¼ 0 the system is exactly proportionally damped.
To demonstrate the effectiveness of the current methods, the perturbed eigensolutions are

compared with the exact results. The error norm of the eigenvalues, defined as

�li
¼

kðlexactÞi 
 ðlpertÞik
kðlexactÞik

for i ¼ 1; . . . ; 2N, (47)

will be used to quantify the accuracy of the perturbed eigenvalues. The exact eigenvalues, lexact;
are obtained by solving the generalized eigenvalue problem of Eq. (11). The perturbed
eigenvalues, ðlpertÞi; correspond to either Eq. (34) or Eq. (44), depending on the approach used.
To check for the accuracy of the perturbed eigenvectors, the orthogonality conditions of Eq. (12)
will be utilized. A modal matrix ½Zpert� is constructed, whose ith column is given by

ðzpertÞi ¼
ðlpertÞi ui

ui

" #
, (48)

where ui is the ith perturbed eigenvector of the system, and it corresponds to either Eq. (35) or
Eq. (45). If the modal matrix is normalized such that the diagonal elements of

½I 0� ¼ ½Zpert�
T½A�½Zpert� (49)

are identically one, then the average of the magnitudes of the off-diagonal terms, defined as

�zpert ¼
1

2Nð2N 
 1Þ

X2N

i¼1

X2N

j¼1;jai

jI 0ijj, (50)

can be used as an error parameter to quantify the correctness of the perturbed eigenvectors. The
smaller this error parameter is relative to one, the closer the perturbed modal matrix is to the
exact. Interestingly, numerical experiments show that the triple product ½Zpert�

T½B�½Zpert� (where
½Zpert� is properly normalized) returns a matrix whose diagonal elements are consistently closer to
the exact eigenvalues than the perturbed eigenvalues obtained using either Eq. (34) or Eq. (44).
The diagonal elements of ½Zpert�

T½B�½Zpert� will be referred to as the approximate eigenvalues, and
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are denoted by l0j to distinguish them from the perturbed eigenvalues. Thus, after the perturbed
modal matrix is obtain and normalized, ½Zpert�

T½B�½Zpert� is evaluated and its diagonal elements
can also be used as approximations to the exact eigenvalues.
For definiteness, let m0 ¼ 2 kg; c0 ¼ 100N s=m and k0 ¼ 5000N=m: When k1 ¼ c1 ¼ 0; the

system is proportionally damped regardless of the parameter s (recall that s is the parameter by
which the damping matrix is multiplied), and as expected, both the least squares approach and the
transformation approach return eigenvalues and eigenvectors that are exact. Consider now a
slightly different system by letting k1 ¼ 700N=m; c1 ¼ 0 and s ¼ 1: The presence of k1 renders the
damping matrix weakly non-proportional. Using the least squares (ls) approach, a ¼ 5:7235�
10
1; b ¼ 1:9464� 10
2; and the summation based non-proportionality index of Eq. (46) gives
dls ¼ 8:6340� 10
2: For the transformation (tf) method, dtf ¼ 4:7289� 10
2: Table 1(a) shows
the exact eigenvalues, the perturbed eigenvalues of Eqs. (34) and (44), and their error norms.
Table 1

(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1a

i ðlexactÞi ðllsÞi ðltf Þi

1 
2:0286eþ 00þ 1:4629eþ 01i 
2:0285eþ 00þ 1:4628eþ 01i 
2:0285eþ 00þ 1:4623eþ 01i

ð4:0711e
 05Þ ð3:8145e
 04Þ

2 
1:8939eþ 01þ 3:9197eþ 01i 
1:8939eþ 01þ 3:9196eþ 01i 
1:8939eþ 01þ 3:9195eþ 01i

ð2:6524e
 05Þ ð4:2326e
 05Þ

3 
3:4152eþ 01þ 4:7975eþ 01i 
3:4114eþ 01þ 4:7818eþ 01i 
3:4114eþ 01þ 4:7817eþ 01i

ð2:7402e
 03Þ ð2:7564e
 03Þ

4 
5:3073eþ 01þ 5:5673eþ 01i 
5:3145eþ 01þ 5:6396eþ 01i 
5:3145eþ 01þ 5:5877eþ 01i

ð9:4545e
 03Þ ð2:8165e
 03Þ

5 
7:0974eþ 01þ 4:5429eþ 01i 
7:0941eþ 01þ 4:5621eþ 01i 
7:0941eþ 01þ 4:5545eþ 01i

ð2:3167e
 03Þ ð1:4387e
 03Þ

(b) The exact and the approximate eigenvalues for the system parameters of (a)b

i ðlexactÞi ðl0lsÞi ðl0tf Þi

1 
2:0286eþ 00þ 1:4629eþ 01i 
2:0286eþ 00þ 1:4629eþ 01i 
2:0286eþ 00þ 1:4629eþ 01i

ð7:0131e
 09Þ ð1:2802e
 07Þ

2 
1:8939eþ 01þ 3:9197eþ 01i 
1:8939eþ 01þ 3:9197eþ 01i 
1:8939eþ 01þ 3:9197eþ 01i

ð7:5815e
 07Þ ð7:6413e
 08Þ

3 
3:4152eþ 01þ 4:7975eþ 01i 
3:4143eþ 01þ 4:7980eþ 01i 
3:4152eþ 01þ 4:7975eþ 01i

ð1:6798e
 04Þ ð4:5872e
 06Þ

4 
5:3073eþ 01þ 5:5673eþ 01i 
5:3034eþ 01þ 5:5621eþ 01i 
5:3073eþ 01þ 5:5673eþ 01i

ð8:3975e
 04Þ ð4:9420e
 06Þ

5 
7:0974eþ 01þ 4:5429eþ 01i 
7:1067eþ 01þ 4:5491eþ 01i 
7:0975eþ 01þ 4:5430eþ 01i

ð1:3285e
 03Þ ð1:7092e
 05Þ

aThe perturbed eigenvalues of the third and fourth columns, obtained by the least squares and the transformation

approaches, are given by Eqs. (34) and (44), respectively. The system parameters are m0 ¼ 2kg; k0 ¼ 5000N=m;
c0 ¼ 100N s=m; c1 ¼ 0; k1 ¼ 700N=m and s ¼ 1: The term in the parentheses represents the error norm of the

eigenvalue.
bThe approximate eigenvalues correspond to the diagonal elements of ½Zpert�

T½B�½Zpert�:
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When an eigenvalue is complex, its conjugate is also an eigenvalue. The eigenvectors
corresponding to complex conjugate eigenvalues are also complex conjugates. For the chosen
set of system parameters, all of the eigenvalues are complex. Thus, only 5 eigenvalues are
presented in Table 1(a). Note how well the perturbed eigenvalues track the exact results. Using the
least squares approach, the maximum error norm of the eigenvalues is less than 0.95%, and using
the transformation method, it is less than 0.29%. The accuracy of the perturbed modal matrix is
given by the error parameter �zpert : Using the least squares approach, ð�zpertÞls ¼ 3:4691� 10
3:
Using the transformation approach, ð�zpertÞtf ¼ 1:4192� 10
3: Because both error parameters are
small relative to one, they indicate that the perturbed eigenvectors are close to the exact. The
accuracy of the perturbed eigenvectors can also be inferred from the diagonal elements of
½Zpert�

T½B�½Zpert�: Table 1(b) shows the exact eigenvalues and the approximate eigenvalues
obtained by expanding the triple product ½Zpert�

T½B�½Zpert�: Note that the diagonal elements of
½Zpert�

T½B�½Zpert� return approximate eigenvalues that are very accurate, as clearly indicated by
their error norms, implying that the perturbed modal matrices are nearly exact. Incidentally, the
error norms are never zero even though some of the exact and approximate eigenvalues appear to
be identical. The eigenvalues are presented with a format of 5 digits plus 2-digit exponent to
make the results more readable. In calculating the error norms, all 16 digits plus 2-digit exponent
are used.
Consider a new system where k1 ¼ 0; c1 ¼ 20N s=m and s ¼ 1: Now the non-proportionality is

attributed to c1: The parameters m0; c0 and k0 remain unchanged. For this set of parameters,
a ¼ 4:3455� 100 and b ¼ 2:0482� 10
2 for the least squares approach. The non-proportionality
indices for the least squares approach and the transformation method are dls ¼ 1:6837� 10
1 and
dtf ¼ 1:3774� 10
1; respectively. Compared to the system of Table 1(a), note that the degree of
non-proportionality has increased. Table 2(a) depicts the exact eigenvalues and the perturbed
eigenvalues obtained by using the current methods. For the least squares approach, the maximum
error norm of the eigenvalues is less than 3.2%, and for the transformation approach, it is less
than 3.0%. The error parameter �zpert is used to quantify the accuracy of the perturbed modal
matrix. Using the current methods, ð�zpertÞls ¼ 1:5317� 10
2 and ð�zpertÞtf ¼ 1:4931� 10
2; both of
which are much less than one. Thus, the perturbed modal matrices obtained by using the least
squares approach and the transformation method agree well with the exact modal matrix. Table
2(b) shows the exact eigenvalues and the approximate eigenvalues corresponding to the diagonal
elements of ½Zpert�

T½B�½Zpert�: Note the improvement in accuracy compared to the perturbed
eigenvalues, as evidenced by the decrease in all of the error norms. The results of Table 2(b) also
reflect the accuracy of the perturbed eigenvectors.
Consider a system with the same m0; c0 and k0; but now with k1 ¼ 550N=m; c1 ¼ 15N s=m and

s ¼ 1:45: The non-proportionality in the system is caused by k1 and c1; and s affects the damping
factors of the system. This set of parameters yields a ¼ 5:3599� 100 and b ¼ 2:8911� 10
2 for
the least squares approach. The non-proportionality indices for the damping matrix are dls ¼
1:5320� 10
1 and dtf ¼ 1:1866� 10
1: Table 3(a) shows the exact and the perturbed eigenvalues.
For the chosen set of system parameters, there are 4 real, negative and distinct eigenvalues in
addition to 3 pairs of complex conjugate eigenvalues. Thus, a total of 7 eigenvalues are shown.
Using the least squares approach, the error norms are all less than 6.5% and ð�zpertÞls ¼

2:8450� 10
2; while using the transformation method, the error norms are less than 7.0% and
ð�zpertÞtf ¼ 2:9392� 10
2: Table 3(b) illustrates the exact and approximate eigenvalues. Note again
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Table 2

(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1a

i ðlexactÞi ðllsÞi ðltf Þi

1 
3:5390eþ 00þ 1:3830eþ 01i 
3:5256eþ 00þ 1:3741eþ 01i 
3:5256eþ 00þ 1:3721eþ 01i

ð6:3142e
 03Þ ð7:6839e
 03Þ

2 
2:5165eþ 01þ 3:5421eþ 01i 
2:5087eþ 01þ 3:5787eþ 01i 
2:5087eþ 01þ 3:5557eþ 01i

ð8:6301e
 03Þ ð3:6147e
 03Þ

3 
3:6455eþ 01þ 4:6273eþ 01i 
3:6534eþ 01þ 4:5435eþ 01i 
3:6534eþ 01þ 4:5431eþ 01i

ð1:4292e
 02Þ ð1:4354e
 02Þ

4 
5:7849eþ 01þ 4:4732eþ 01i 
5:7405eþ 01þ 4:5064eþ 01i 
5:7405eþ 01þ 4:5051eþ 01i

ð7:5948e
 03Þ ð7:4835e
 03Þ

5 
7:2825eþ 01þ 3:9185eþ 01i 
7:3282eþ 01þ 4:1719eþ 01i 
7:3282eþ 01þ 4:1575eþ 01i

ð3:1139e
 02Þ ð2:9429e
 02Þ

(b) The exact and the approximate eigenvalues for the system parameters of (a)b

i ðlexactÞi ðl0lsÞi ðl0tf Þi

1 
3:5390eþ 00þ 1:3830eþ 01i 
3:5392eþ 00þ 1:3833eþ 01i 
3:5392eþ 00þ 1:3831eþ 01i

ð1:6840e
 04Þ ð3:9172e
 05Þ

2 
2:5165eþ 01þ 3:5421eþ 01i 
2:5158eþ 01þ 3:5415eþ 01i 
2:5165eþ 01þ 3:5422eþ 01i

ð2:0334e
 04Þ ð3:7441e
 05Þ

3 
3:6455eþ 01þ 4:6273eþ 01i 
3:6439eþ 01þ 4:6289eþ 01i 
3:6455eþ 01þ 4:6282eþ 01i

ð3:7814e
 04Þ ð1:5917e
 04Þ

4 
5:7849eþ 01þ 4:4732eþ 01i 
5:7762eþ 01þ 4:4688eþ 01i 
5:7848eþ 01þ 4:4706eþ 01i

ð1:3401e
 03Þ ð3:4702e
 04Þ

5 
7:2825eþ 01þ 3:9185eþ 01i 
7:3073eþ 01þ 3:9397eþ 01i 
7:2977eþ 01þ 3:9329eþ 01i

ð3:9421e
 03Þ ð2:5279e
 03Þ

aThe perturbed eigenvalues of the third and fourth columns are given by Eqs. (34) and (44), respectively. The system

parameters are m0 ¼ 2 kg; k0 ¼ 5000N=m; c0 ¼ 100N s=m; c1 ¼ 20N s=m; k1 ¼ 0 and s ¼ 1:
bThe approximate eigenvalues correspond to the diagonal elements of ½Zpert�

T½B�½Zpert�:
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the improvement in accuracy for all of the approximate eigenvalues compared to the perturbed
eigenvalues. The results of Table 3(b) imply that the perturbed modal matrices obtained by using
the current methods track the exact modal matrix fairly accurately.
A least squares approach and a transformation method are developed that can be used to

obtain the eigenvalues and eigenvectors of an arbitrarily damped nearly proportional or weakly
non-proportional system. The proposed schemes require only the eigensolutions of the undamped
configuration, and are computationally efficient because they only involve simple algebraic
operations. Numerical experiments showed that both methods return perturbed eigensolutions
that agree well with the exact even for non-proportionality indices as large as 15%, and that
approximations to the exact eigenvalues can be consistently improved by using the diagonal
elements of ½Zpert�

T½B�½Zpert�:
The proposed approaches can be exploited in other applications. Specifically, the effects of

small changes made to a weakly non-proportionally damped system can be easily analyzed. Using
the methods developed in this paper, one can first determine the approximate eigensolutions for
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Table 3

(a) The exact and the perturbed eigenvalues (rad/s) for the system of Fig. 1a

i ðlexactÞi ðllsÞi ðltf Þi

1 
4:5441eþ 00þ 1:4050eþ 01i 
4:5332eþ 00þ 1:3997eþ 01i 
4:5332eþ 00þ 1:3931eþ 01i

ð3:6372e
 03Þ ð8:0780e
 03Þ

2 
4:0170eþ 01 
4:2231eþ 01 
4:2231eþ 01

ð5:1299e
 02Þ ð5:1306e
 02Þ

3 
3:4252eþ 01þ 2:6805eþ 01i 
3:4133eþ 01þ 2:7590eþ 01i 
3:4133eþ 01þ 2:7012eþ 01i

ð1:8263e
 02Þ ð5:4785e
 03Þ

4 
4:9372eþ 01 
5:1207eþ 01 
5:2813eþ 01

ð3:7180e
 02Þ ð6:9697e
 02Þ

5 
5:2737eþ 01þ 2:9870eþ 01i 
5:2594eþ 01þ 2:5989eþ 01i 
5:2594eþ 01þ 2:5986eþ 01i

ð6:4082e
 02Þ ð6:4126e
 02Þ

6 
1:1286eþ 02 
1:1164eþ 02 
1:1004eþ 02

ð1:0808e
 02Þ ð2:5033e
 02Þ

7 
1:7036eþ 02 
1:6823eþ 02 
1:6823eþ 02

ð1:2512e
 02Þ ð1:2514e
 02Þ

(b) The exact and the approximate eigenvalues for the system parameters of (a)b

i ðlexactÞi ðl0lsÞi ðl0tf Þi

1 
4:5441eþ 00þ 1:4050eþ 01i 
4:5430eþ 00þ 1:4055eþ 01i 
4:5442eþ 00þ 1:4051eþ 01i

ð3:4345e
 04Þ ð4:6416e
 05Þ

2 
4:0170eþ 01 
4:1828eþ 01 
4:0595eþ 01

ð4:1271e
 02Þ ð1:0575e
 02Þ

3 
3:4252eþ 01þ 2:6805eþ 01i 
3:4235eþ 01þ 2:6787eþ 01i 
3:4251eþ 01þ 2:6816eþ 01i

ð5:6199e
 04Þ ð2:4876e
 04Þ

4 
4:9372eþ 01 
4:9175eþ 01 
4:8655eþ 01

ð3:9901e
 03Þ ð1:4522e
 02Þ

5 
5:2737eþ 01þ 2:9870eþ 01i 
5:2643eþ 01þ 3:0044eþ 01i 
5:2554eþ 01þ 3:0057eþ 01i

ð3:2708e
 03Þ ð4:3086e
 03Þ

6 
1:1286eþ 02 
1:1274eþ 02 
1:1300eþ 02

ð1:1061e
 03Þ ð1:2056e
 03Þ

7 
1:7036eþ 02 
1:7019eþ 02 
1:7033eþ 02

ð1:0392e
 03Þ ð1:6371e
 04Þ

aThe perturbed eigenvalues of the third and fourth columns are given by Eqs. (34) and (44), respectively. The system

parameters are m0 ¼ 2 kg; k0 ¼ 5000N=m; c0 ¼ 100N s=m; c1 ¼ 15N s=m; k1 ¼ 550N=m and s ¼ 1:45:
bThe approximate eigenvalues correspond to the diagonal elements of ½Zpert�

T½B�½Zpert�:
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the arbitrarily damped but nearly proportional system. Then applying the classical first-order
eigensolution perturbation techniques, one can find the changes in the eigendata due to small
modifications that are subsequently introduced. The unperturbed system corresponds to the
weakly non-proportionally damped structure, and the perturbation consists of the small changes
that are introduced. In addition, because closed-form expressions for the perturbed eigenvalues
and eigenvectors are derived, the current methods can be applied to study the sensitivities of the
eigensolutions on the various system parameters.
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4. Conclusions

In this paper, two distinct approaches are proposed that can be used to obtain the approximate
eigensolutions for arbitrarily damped nearly proportional systems without resorting to state form. The
approximate eigensolutions are obtained by means of a first-order perturbation analysis, where the
unperturbed system consists of a damped configuration whose damping matrix can be diagonalized by
the same transformation that uncouples the mass and stiffness matrices of the undamped system, and
the perturbation consists of a first-order damping matrix given by the deviation of this diagonalizable
damping matrix from the actual damping matrix. Both schemes require only the eigensolutions of the
undamped system and are easy to implement. Interestingly, if the first-order perturbed modal matrix,
½Zpert�; is properly normalized such that the diagonal elements of ½Zpert�

T½A�½Zpert� are identically one,
then the diagonal elements of ½Zpert�

T½B�½Zpert� can also be used to approximate the exact eigenvalues,
and numerical case studies show that the resulting diagonal elements are consistently more accurate than
the first-order perturbed eigenvalues. Various numerical experiments were performed, and excellent
agreement with the exact eigensolutions was demonstrated.
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